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Abstract —The dominant and the first-five higher order modes in a

unilateral finline are precisely described from a thorough spectral-domain

approach. Then, using the modal analysis, coupling coefficients between
eigenmodes at a dkcontinuity that have to be introduced into the scattering

matrix formulation are directly computed in the spectral-domain, and,.
consequently, the equivalent circuit parameters of the discontinuity are

determined. Finafly, finline discontinuities often used for impedance trans-

formation are investigated and a good agreement between theoretical and

experimental results is reported.

Y

I. INTRODUCTION

T

HE FIELD THEORETICAL solution of finline dis-

continuities presents a complex problem. This ~xplains

the small number of concise and rigorous attempts of

analyses reported in the recent literature [1].

In fact, the major complexity for efficient and accurate

analysis of single or. complex discontinuities in finline

structures lies in the necessary treatment of hybrid eigen-

modes to which there is no closed-form solution.

Firstly, the modal analysis [2] has been applied [3] to

single and double steps in the finline slot width, while the

characterization of uniform finline structures was obtained

by the moment mode-matching technique [4].

This pioneering work provided an insight into CAD

potentialities of integrated millimeter-wave finline circuits

[5] that such a field theoretical solution could provide.

Elowever, a hasty model in terms of equivalent circuits

prevents an unbiased evaluation of computed intermediate

field parameters.

A. Beyer and I. Wolff [6] used”a nearly similar approach

of the finline treatment and solved the discontinuity prob-

lem by a flexible and elegant combination of the moment

mode-matching technique and the modal analysis.

In solving the problem of the rectangular waveguide

finljne tapers,. use was made, for the first time, of the

powerful method of coupled modes [7] accompanied by the

spectral-domain approach. It was shown that such a corn- I

bination offers a very efficient computational scheme of

the return and insertion losses of the “back-to-back” taper-
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Fig, 1. Cross-sectIon parameters of a unilateral finlrne. In the Ku-band
(12-18 GHz), A =15.8 mm, B = 7.9 mm, h2 = 0.635 mm, and C,= 9.6

(Alumina). In the Ku-band (26-40 GHz), A = 7.112 mm, B = 3.556
mm, AZ = 0.254 mm, and C,= 2.22 (Duroid 5880).

ing transition. Unfortunately, experiments were unable to

validate the presumed exact fields computations.

Recently, the transverse resonance techniques [8] were

used to compute the resonant frequencies of a resonant

structure containing the finline discontinuity and in conse-

quence to determine the equivalent-circuit parameters of

the discontinuity.

This paper presents a precise field theoretical solution of

finline discontinuities using a combination of the spectral-

domain approach and the modal analysis.

The aim of the paper is threefold: 1) to give an accurate

evaluation of six eigenmodes of the unilateral finline via a

thorough spectral-domain approaclh; 2) to perform calcula-

tions of the generalized scattering matrix of a single-step

slot width discontinuity by combining the direct modal

analysis and the spectral-domain approach [9] and, conse-

quently, to determine the equivalent-circuit parameters of

this discontinuity; 3) to compare the theory and experi-

ments in the Ku- and Ku-bands on complex discontinuities

[10], as this is the only method that enables the direct

comparison of measured and calculated scattering parame-

ters of either the simple or the complex discontinuity.

II. SPECTRAL-DOMAIN APPROACH OF A

UNILATERAL FI~LINE

The axial field components E=,, (x, y) and Hz,, [x, y) in

the i th region (i =1,2,3) are expanded in Fourier series

(Fig. 1) within their domain

– B/2<x < B/2.
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For odd waves, the following expansions of EZ,,(X, y)

and H,,, (x, y) are valid:

EzI(x, y)= ~ ZZl(m, y)sina~x
~=1

Hzt(x, y)= ~ R=,(rn,y)cosamx (1)
~=o

where quantities with the sign ( - ) designate the line

amplitude (i.e., the m th term of the Fourier series) associ-

ated with the space harmonic am = 2m T/B.

The partial differential equations for the axial field

components E=, i (x, y) and Hz, i(x, y) are also Fourier

expanded with respect to x; ordinary differential equations

are derived for the mth line amplitudes flz, ,(m, y) and

HZ, i(m, y), respectively.

For a unilateral finline (Fig. 1), these mth line arPpli-

tudes are given in Appendix I. .
Through the application of boundary conditions at y = O

and y = h ~, which are also Fourier expanded, the spectral

coefficients are related to each other, to the m th line

amplitudes of fin surface current components denoted

~X(m, IZ2) and ~z(m, hz), and to the mth lin~ amplitude of

t~e slot aperture field components denoted E.(m, h ~) and

E=( m, h ~). Extensive algebraic manipulations of these

boundary conditions then yield functional equations re-

lating the m th line amplitude of the fin surface current

components to the m th line amplitude of the slot aperture

field components. For a unilateral finline, the standard

computational scheme uses the following admittance ma-

trix representations of these functional equations, namely:

Closed-form expressions of the ~ matrix elements are

listed in Appendix II.

Now it is the moment to start the numerical part through

the application of the Galerkin’s form of the general method

of moments to the functional equations (2), The slot aper-

ture field components EX(X, h J and E=(x, h ~) are ex-

panded in terms of two complete sets of R and S basis

functions denoted cfX,,(x, h2)(r = 1,” “ “, R) and

#,,, (x, h2)(.s =1,. . .,s)

Ex(x, h2) = f a,cfX,,(x, h2)
~=1

- EZ(X, IZ2)= ~ b,&z,$(X, h2). (3}
S=l

Obtiously, the basis functions in (3) have nonzero values

in the interval – W/2 < x < JV/2 of the cell – B/2 < x <

B/2.

The expansions (3) are displayed in Fourier series to

bring the m th line amplitude of the aperture field compo-

nents and the m th line amplitude of basis functions into

relationship denoted by

Z+(m, hz)= f a,c?X,p(m, h2)
J.=l

Zz(m, hz)= f’ b,$z,,(m, hz). (4)
~=1

The coefficients a, and b, involved in (3) and (4) are the

first true constants of the waveguide problem.

By using an inner product consistent with the Parseval

theorem, the Galerkin’s procedure is directly applied to the

matrix form (2) in the Fourier domain. A set of R + S

homogeneous and linear equations, for which the R + S

unknowns are precisely the constants a, and b,, is ob-

tained.

Nontrivial solutions of this set of equations occur for

zero values of its matrix deteqninant. The real roots (i.e.,

P 2> 0) determine the propagating eigenmodes, whereas
the imaginary roots (i.e., /32 <O) determine evanescent

ones.

For any given root ~, the associated mth line amplitudes

of the aperture field components are expressed in terms of

the R + S coefficients a, ~nd b, involved @ (4). By a

substituticm p[ocess of ~X(m, II z ) and Ez(m, h ~) in

boundary conditions, the coefficients A(m) through H(m)

are determined, as well as the m th line amplitude of the

axial field components. The summation of Fourier series

gives finally the axial field components of eigenmodes

anywhere in the waveguide cross section.

Eigenmode normalization is not a necessary task as far

as the waveguide treatment is concerned. However, this

operation can be found relevant in the further discontinu-

ity problem. So, applying again the Parseval’s theorem, the

orthogonality of eigenmodes in losiless waveguides can be

expressed directly in the spectral domain as

where tiPP represents the Kroneker delta and the coefficient

s can take the values + 1 or – 1 depending on the propa-

gating or evanescent nature” of the eigenmode labelled p.

Line amplitudes of transverse field components involved in

(5) are derived from longitudin@ components given by (1).

The eigenmode normalization is carried out if the R + S

unknowns ar and b, in (3) and (4) associated with a given

root ~ are reevaluated to ensure a power flow value P

equal to 1 W in (5).

III. MODAL ANALYSIS’• F SINGLE- AND

MULTIPLE-STEP

SLOT WIDTH DISCONTINUITIES

The problem to be treated is how an incident accessible

power entering each side of the junction is apportioned

between the various scattered eigenmodes. The solution lies

in the derivation of the generalized scattering matrix [S] of
the junction.
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Fig. 2. (a) A single-step slot width Junction between

finlines. (b) Model for modaf analysis.
two unilatemJ

A single slot width discontinuity as that shown in Fig.

2(a) can be modeled by a junction between two cylindrical

closed wavegnides as shown in Fig. 2(b). We have to notice

that the conducting fins in Fig. 2(a) have negligible thick-

ness. They have been drawn so for a better comprehension

of the model of Fig. 2(b).

The transverse electric and magnetic field to the left of

the junction plane z = O (waveguide I side) can be ex-

pressed as

~=1

fi; = fi (A; –B;)i; ,T. (6)
~=1

In a similar manner, to the right of the junction plane

z = O, the expansion of the transverse electric and magnetic

fields is written as

(7)

The above expansions involve normalized transverse

electric and magnetic fields .?;, ~, ~~, ~ (resp.: .Z~~, ~~, ~)

associated with the eigenmode p (resp.: q) of the wave-

guide I (resp.: II). Eigenmodes p and q are forward

traveling waves in the two waveguides I and II, while the

modal amplitudes xl;, l?; (resp. A;, B:) are referred to

incident and reflected waves in the waveguide I (resp. 11) at

the junction plane.
If SI < SII (this is the case outlined in Fig. 2), the

boundary conditions at the junction plane z = O can be

expressed as

~;= ~;l (8a)

~;= @ (8b)

on the aperture surface S~ and as

~# = O (8c)

ti$l + J:Aii= O (8d)

on the transverse conducting wall Sc.

The junction surfaces Sti and Sc are related to wave-

guide cross sections SI and SII by S~ = SI and S~ + Sc =

A1l.

The surface current ~~ on the conducting wall Sc is

labeled with a subscript I to indicate a relationship with

waveguide I.

The next step is to transform pairs of boundary func-

tional equations (8a) and (8b) into an equivalent set of

linear equations involving the 2(P + Q) modal amplitudes

A;, B;, A1*~, and B& to be determined.

There is a unique procedure to derive such an equivalent

linear set of 2(P + Q) equations that is closely related to

the basic assumption SI < SII. This point has never been

clarified enough in the literature, especially according to

the uniqueness of the solution; therefore, it is summarized

briefly in Appendix III.

Thus, the generalized scattering matrix of the simple

discontinuity can be constructed from this system of

equivalent linear equations which can be written in a

matrix form as

qP]([A’]+[BI]) = [L]([Aq+[Bq)

[lC]([AI]-[BI]) = [N]([N-[N]) (9)

with

[AI] =

[AII] =

[BI] =

(lo)
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where

J
[P] matrix P x Q; P,,, = .?j,TA~~~T.ZdS

s~

B
[L] diagonal matrix Q x Q; L,,, = S,~

q

[K] diagonal matrix P x P; Kp,P=Sp&

J
[N] matrix Q x P; N,,, = Zj~TAi~,T. ildS.

s~

(11)

From (9), the generalized scattering mat& can be written

in the form

[B]= [S]. [A] (12)

where

‘B]=[$i]‘Al=[l!$i] “3)
The generalized scattering matrix of the junction assem-

bles two reflection blocks denoted [Sll] and [S22] and two

transmission blocks denoted [Szl] and [S12] arranged as

[

[s,llsl<s,, [s121s1<s,1 1[sl$<%l=[s,,]~<s[s22]s<~,,“ ’14)
1 11 1

Each block has a size (P+ Q)x(P + Q) and can be

determined separately from matrices [P], [L], [K], and [N]

after extensive algebraic manipulation of (9). Results are

listed below:

[%]SF.SU=([ ~]+[N]OIL]-’”TIP] )-’

.([K]-[N]o[L]-’.~[ P])

[Sl,]~I<~ll =2([K]+ [N]. [L]-’.T[P][N]. [N]

[%IS,<.S1, =Z([L]+TIPI”[K] -l. [N]) -’.TIP]

[S221S1<S1, =-([LI+TIP]”[K] -l”[N])-’

.([L]-~P].[K]-l. [N]). (15)

The above [S] matrix is labeled with subscripts SI < SII

to recall that it is addressed only to the case SI < SII. As

mentioned in Appendix III, the [S] matrix addressed to the

alternative case SII < SI is derived in a quite different way.

However, the results can be related to the previously

studied case: SI < SII. This relation can be written as

[s]sl>.sll=
[

[%lsl<s,l [%lsl<sll

1[$21s1<s1, [%lsl<s,l “
(16)

IV. COMBINATION OF THE SPECTRAL-DOMAIN

APPROACH AND THE MODAL ANALYSIS

The spectral-domain approach evaluates both the phase

constants and the associated line amplitudes of eigenmode
field components.

TABLE I
BASIS FUNCTIONS AND ASSOCIATED LINE AMPLITUDES OF THE

APERTURE FIELD CORRESPONDING TO ODD MODES

1 I I
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As a result of the eigenmode normalization, the calcula-

tion of elements Lqq and Kpp of matrices [L] and [K] is

reduced to the determination of the propagating or

evanescent nature of eigenmodes labeled p and q in wave-

guides I and II, respectively.

The computation of elements PP,~ and Nq,P of matrices

[P] and [Q] can be quickly accomplished as it is done

directly in the spectral domain. For example, the P,, q

coefficient can be expressed from (11) as

-ijY(m, _y)fi:,:(nz, ~)] dy. (17)

V. COMPUTED RESULTS

A. Unilateral Finline Ana@is

The sets of basis functions selected to describe the

aperture field are represented in Table I. As shown in [11],

the dominant mode can be described precisely by means of

a single EX(X, D) basis function: the unit rectangular pulse

denoted jl(x) in Table I. However, to describe both the

dominant and the higher order modes, the aperture field

expanded with the basis functions denoted ~l(x), ~z(x),

~s(x), and ~~(x) in Table I appears as a more judicious
choice. Checks of this aperture field have been made in two

limit cases for the unilateral finline: the standard rectangu-

lar waveguide (~, ~ 1; W/B ~ 1) and the rectangular

waveguide loaded symmetrically by. a dielectric slab

(W/B ~ 1). They allowed conclusions to be made about
the completeness of at least the first six eigenmodes.
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Fig. 3. Dispersion characteristics of eigenrnodes in a unilateral finline in
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Fig. 4. Ex field component of the fundamental eigenmode for the
shown finline.

Dispersion characteristics of the first six eigenrnodes in a

unilateral finline in the Ku-band are plotted in Fig. 3 for

two values of the slot width. They show that the frequency

band for single-mode operation in. a unilateral finline is

quite identical to those of the standard WR28 rectangular

waveguide. Another check of the aperture field is to com-

pute the eigenmode distribution to be sure of the boundary

conditions as shown in Fig. 4 for the EX component of the

fundamental mode as a function of y at x = 0.8 mm.

B. Scattering Parameters of Single -Step Slot Discontinuity

in a Unilateral Fin line

The most critical factor in the modal analysis is the

convergence of reflection and transmission coefficients as a

function of the number of modes taken into consideration

when writing the boundary condition equations (8) at the

junction plane. A relative convergence towai-ds wrong val-

ues may be obtained if the number of modes is not

sufficiently high.

Convergence tests on the moduli and the phases of

reflection and transmission coefficients are performed

making use of the description possibilities that are offered

by the spectral-domain approach for the finline. The re-

0.220 -

0225 -

I -

0230

%

0.235 –
T

.—

I

0240 -

0245 -

<

I F =35 GH~

~

Ge.erallzed Matrix Dimenso.s ( P + Q ) _

Fig. 5. Convergence test of the amplitude of the transmission coefficient
for a step slot width discontinuity between two unilateral finlines

(dimensions are in mdlimeters).

suits of these tests applied on an abrupt junction between

two finlines, as well as on an abrupt junction between a
finline and a rectangular waveguide, are respectively given

in Figs. 5 and 6. Here, the total number of modes did not

exceed 14. The highest level of the curves drawn in Figs. 5

and 6 is supposed to be the real convergence level. Fig. 7

shows the computed scattering parameters of a unilateral
finline discontinuity as a function of frequency compared

with these computed by Schmidt [8] using the mode-match-

ing procedure and with these computed by Sorrentino and

Itoh [8] using the transverse resonance technique. Our

results are in excellent agreement with Schmidt’s results

and in good agreement with Sorrentino’s.
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Fig. 6. Convergence test of the amplitude of the transmission coefficient for an abrupt junction between an empty rectangular
waveguide and a unilateral firdine (dimensions are in millimeters).
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Fig. 7. Scattering parameters of a unilateral finline step discontinuity.

— Our theory, ----- Sorrentino’s [8] results, and o Schmidt’s results,

~. Comparison Between Theoiy and Experiments

In order to evaluate objectively the effectiveness of the

direct modal analysis for computer-aided design of finline

circuits containing different discontinuities, the following

three circuits have been fabricated, their scattering parame-

ters have been calculated, and finally measured. The calcu-

lation of each circuit includes the effect of the discontinu-
ityy created by the narrow face of the substrate. The first

circuit is that of two simple rectangular waveguide-uni-

Iateral finline junctions as shown in Fig. 8. The agreement

can be judged satisfactory for the module of the transmis-

sion coefficient. The f;equency shift of about 500 MHz can

Cr =96

k
49,s

I ~ WR 62

I= 0,635

7,90 : ‘1 -4-
Cr=l

------ Theory

— Experiment

13 14 15 16 17 18

Frequency ( GHz ) —~

Fig. 8. Back-to-back arrangement of two abrupt junctions between an

empty rectangular waveguide and a unilateral finline (dimensions are in
millimeters.

be explained by the mechanical constraints in. the fabrica-

tion process (e.g., positioning grooves). The second circuit

represents a pair of complex transitions each composed of

three single simple transitions as shown in Fig. 9. The

agreement between theory and experiment is still good in

spite of the systematic frequency shift like that observed in

the results of the first circuit. The third circuit is that given
in Fig. 10, which represents a gradual transition operating

in the Ku-band. The calculations are performed after divid-

ing the transition into nine single simple discontinuities

(Fig. 11). The agreement between theory and experiment is

considered definitively satisfactory.
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Fig. 9. Measurements and simulation results of a waveguide to finline

complex transition in the Ku-band (dimensions are in millimeters).
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Fig. 10. Comparison between theory and experiment for the shown
tapered transition (dimensions are in milhmeters).

VI. EQUIVALENT-CIRCUIT PARAMETERS OF SIMPLE

FINLINE DISCONTINUITIES

The knowledge of both the reflection coefficient Sll and

the transmission coefficient S21 in a given frequency band

allows one to construct the equivalent circuit of the junc-

tion.

Each line having an access to the junction is considered

as a lossless transmission line for which the effective dielec-

tric constant and the characteristic impedance are those

corresponding to the fundamental mode. The spectral-

domain approach of a finline allows one to calculate these

parameters directly in the spectral domain with excellent

7

Fig. 11. Theoretical cutting used in the simulation of the transition
reported in Fig. 10 (dimensions are in millimeters).
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Fig. 12. Equivalent-circuit parameters of an elementary discontinmty.

accuracy. It is worth mentioning that the characteristic

impedance is calculated according to a definition that

relates the power flow of the fundamental mode and the

potential that is induced between the slot edges.

As far as the single-step slot discontinuity is concerned,

an equivalent circuit like that shown in Fig. 12 can be

selected. The parameters C, 11, and III of this equivalent

circuit can be calculated by comparison of its scattering

matrix to that of the single simple discontinuity restricted

to four coefficients which represent the reflection and the

transmission on only the fundamental eigenmodes of the

two finlines having an access on the junction.

Examples of the results are reported in Figs. 13 and 14.

VII. CONCLUSION

The spectral-domain approach combined with the direct

modal analysis appears as a very promising technique for

calculation of scattering matrix elements of finline discon-

tinuities.
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The agreement between theory and measurements per-

formed on three different complex finline discontinuities is

quite satisfactory.

APPENDIX I

The nzth line amplitudes ~=, i(m, y) and fi=, i(nz, y) can

be written in the case of unilateral finline in the following

form:

fiz,l(m, y)= A(w)sinhyl(y+hJ

ti=,l(m, y)= B(rn)coshyl(y+hJ (Ala)

in region (2)

~z,z(m, y) = C(m) sinhyzy + D(nz)coshy2y

fiz,2(m, y)= E(m)sinhy2y +F(m)coshyzy

(Alb)

and in region (3)

~.,s(m, y)= G(m)sinhyq(hz +~s-y)

27 29 31 33 35 37 39

Frequency ( GHz ) —

Fig. 14. Reference plane localization as a function of the frequency for
the given elementary discontinuity (c, = 2.22, h ~ = 0.254 mm).

Convergence is indeed necessary both in the waveguide

eigenmode evaluation and in the waveguide discontinuity
problem. In the case of a unilateral configuration, results

show that a relatively simple aperture field allowed an

unambiguous identification of six eigenmodes. Moreover,

they show that, within such an identification, a satisfactory

convergence on scattering parameters of a step slot width

discontinuity can be achieved.

~z,3(rrz, y)= H(m)coshy3(h2 +h, -y) (Ale)

where coefficients y, (i= 1, 2, and 3) are defined as

~~=y;=a:–k~

y~=ai–k: (A2a)

with

k:=ti2pofo-~2

k: = U2pococ, –/12 (A2b)

represent the transverse wavenumbers of the m th line

amplitude of the guided wave inside each region,

In (A2b), ~ denotes the phase constant of the guided

wave to be determined at any given angular frequency ~.

APPENDIX II

The elements of the admittance matrix representation

[G] given in (2) can be written as

[
Gil=–j k:

tanh(yzhz)

(

Y1
–<OF k;

P o@Y2 tanh(yllzl)

~ rY2
+ k:

)

+k2coth(ylh J1(A3)
tanh(y2A2) 1 Po~ Y1

G12 = G21 = ja~
[

tanh(y2h2)

(

Y1
COF

Po~Y2 – tanh(ylhl)

~,Y2
+

)

+ coth(y1k3)

tanh(y2k2) P o~Yl I (A4)

[(
G22 = j B2

tarth(y2h2) _F ~13Y1

P o@Y2 tanh(yllzl) )

(

+~ coth(y1h3) _F ~ of rY2
1

P o~Yl tanh(y71z7) )1

(A5)
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where

k:= CJ2pococ,-/?2

kf = u’poco–~’

B2 = a’ – pococ,~’

(tanh(yzhz) + ~ tanh(ylhl)
+ (klk2)2yly2

tanh(ylhl) )1‘tanh(yzhz) “

APPENDIX III

Equations (8a) and (8c) are scalarly multiplied by ~~,~Aii

and e~~TA Z, respectively, and then integrated over S~.

Since SI < SII, S~ = SI, thus the orthogonality properties

of eigenmodes in waveguide I can be used to obtain the

following set of P + Q linear equations:

.

q~=l,. . ., Q (A6)

#
)j Z;?,TAi$TiidS,

s~

p~=l,. . . , P “(A7)

which are found quite equivalent to boundary functional

equations (8). ‘

Similarly, the scalar multiplication of (8b) by h~~Ail

and (8d) by e~~rA ii and the surface integration over Sc

provides the set of P + Q equations

q~=l,. .o , Q (A8)

pf=~,. . . , P. (A9)

During derivation, use has been made of the following

equation:

~ (Zp/, ~Aii). (J~AZ) dS=~ J~.ej~~dS= O
s. s.

due to the above-mentioned connection of the surface

current ~~ with waveguide I.

Clearly, the set (A8) can be imbedded in set (A6) after

enlarging the surface integration at its right-hand side from

SI to SII = S~ + Sc. Such a widening is done without

altering the left-hand side of set (A6), and, moreover, use

can then be made of the orthogonality in waveguide II.

Now, as far as the set (A7) is concerned, another look at

the set (A9) shows that its right-hand side already includes

it.

Considering now the case SI > SII, the functional

boundary conditions of (8) still hold except those over Sc

((8c) and (8d)), which must be replaced by
.,

E:=O (A1O)

fi: = J~&j (All)

where the superscript II of the surface current notation J?

indicates now a relationship with the waveguide II. There,

another unique procedure must be employed to derive the

linear set of P + Q equations equivalent to the boundary

functional equations (8), (A9), and (A1O).

This alternative procedure starts from the scalar multi-

plication of (8a) and (A6) by h;, TAii and of (8b) and

(A7) by e~~Aii, followed by surface integration where use
must be made of the basic assumptions S~ = SII and

SA+ Sc= S1.
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