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Theoretical and Experimental Investigation
of Finline Discontinuities

MARYLINE HELARD, JACQUES CITERNE, ODILE PICON, anp VICTOR FOUAD HANNA

Abstract —'The dominant and the first-five higher order modes in a
unilateral finline are precisely described from a thorough spectral-domain
approach. Then, using the modal analysis, coupling coefficients between
eigenmodes at a discontinuity that have to be introduced into the scattering
matrix formulation are directly computed in the spectral-domain, and,
consequently, the equivalent circuit parameters of the discontinuity are
determined. Finally, finline discontinuities often used for impedance trans-
formation are investigated and a good agreement between theoretical and
experimental results is reported.

I. INTRODUCTION

HE FIELD THEORETICAL solution of finline dis-

continuities presents a complex problem. This ¢xplains
the small number of concise and rigorous attempts of
analyses reported in the recent literature [1].

In fact, the major complexity for efficient and accurate
analysis of single or.complex discontinuities in finline
structures lies in the necessary treatment of hybrid eigen-
modes to which there is no closed-form solution.
~ Firstly, the modal analysis [2] has been applied [3] to

single and double steps in the finline slot width, while the
characterization of uniform finline structures was obtained
by the moment mode-matching technique [4].

This pioneering work provided an insight into CAD
potentialities of integrated millimeter-wave finline circuits
[5] that such a field theoretical solution could provide.
However, a hasty model in terms of equivalent circuits
prevents an unbiased evaluauon of computed 1ntermed1ate
field parameters.

A. Beyer and I. Wolff [6] used a nearly similar approach
of the finline treatment and solved the discontinuity prob-

lem by a flexible and elegant combination of the monient -

mode-matching technique and the modal analysis.

In solving the problem of the rectangular waveguide
finline tapers,. use was made, for the first time, of the
powerful method of coupled modes [7] accompanied by the
spectral-domain approach. It was shown that such a com-
bination offers a very efficient computational scheme of
the return and insertion losses of the “back-to-back” taper-
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Fig. 1. Cross-section parameters of a unilateral finhine. In the Ku-band
(12-18 GHz), A =15.8 mm, B=7.9 mm, h, = 0.635 mm, and ¢, = 9.6
(Alumina). In the Ka-band (26-40 GHz), 4=7.112 mm, B =3.556
mm, 4, =0.254 mm, and ¢, = 2.22 (Duroid 5880).
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ing transition. Unfortunately, experiments were unable to
validate the presumed exact fields computations.

Recently, the transverse resonance techniques [8] were
used to compute the resonant frequencies of a resonant
structure containing the finline discontinuity and in conse-
quence to determine the equivalent-circuit parameters of
the discontinuity.

This paper presents a precise field theoretical solution of
finline discontinuities using a combination of the spectral-
domain approach and the modal analysis.

The aim of the paper is threefold: 1) to give an accurate
evaluation of six eigenmodes of the unilateral finline via a
thorough spectral-domain approach; 2) to perform calcula-
tions of the generalized scattering matrix of a single-step
slot width discontinuity by combining the direct modal
analysis and the spectral-domain approach [9] and, conse-
quently, to determine the equivalent-circuit parameters of
this discontinuity; 3) to compare the theory and experi-
ments in the Ku- and Ka-bands on complex discontinuities
{10], as this is the only method that enables the direct
comparison of measured and calculated scattering parame-
ters of either the simple or the complex discontinuity.

II. SPECTRAL-DOMAIN APPROACH OF A

UNILATERAL FINLINE

The axial field components E, ,(x, y) and H, (x, y) in
the ith region (i=1,2,3) are expanded in Fourler series
(Fig. 1) within their domain

—B/2<x<B/2.
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For odd waves, the following expansions of E, (x, y)
and H, (x, y) are valid:

o0
E,(x,y)= )Y E,(m, y)sina,x

m=1

ey

©
HZl(x’ y) = Z ﬁzt(m’y)cosamx
m=20

where quantities with the sign (~) designate the line
amplitude (i.e., the mth term of the Fourier series) associ-
ated with the space harmonic a,, = 2ma/B.

The partial differential equations for the axial field
components E, ;(x,y) and H, (x, y) are also Fourier
- expanded with respect to x; ordinary differential equations
are derived for the mth line amplitudes Ez’l(m, y) and
fIz, ;(m, ), respectively.

For a unilateral finline (Fig. 1), these mth line ampli-
tudes are given in Appendix L. .

Through the application of boundary conditions at y =0
and y = h,, which are also Fourier expanded, the spectral
coefficients are related to each other, to the mth line
amplitudes of fin surface current components denoted
J(m, h,) and J,(m, h,), and to the mth ling amplitude of
the slot aperture field components denoted E (m, h,) and
E,(m, h,). Extensive algebraic manipulations of these
boundary conditions then yield functional equations re-
lating the mth line amplitude of the fin surface current
components to the mth line amplitude of the slot aperture
field components. For a unilateral finline, the standard
computational scheme uses the following admittance ma-
trix representations of these functional equations, namely:

ol

G22 Ez ( m, h 2)

Closed-form expressions of the G matrix elements are
listed in Appendix II.

Now it is the moment to start the numerical part through
the application of the Galerkin’s form of the general method
of moments to the functional equations (2). The slot aper-
ture field components E (x,k,) and E,(x,h,) are ex-
panded in terms of two complete sets of R and S basis
functions denoted &, . (x, hy)(r =1,---, R) and
éﬂz,s(x7 hy)(s =1, S)

jx(m? h2)

R
’ Ex(x’h2)= Z argx,r(x’h2)
r=1

* E (x,hy)= E bséaz,s(x7h2)‘ (3>

s=1

Obviously, the basis functions in (3) have nonzero values
in the interval —W/2 < x<W/2 of the cell — B/2<x <
B/2.

The expansions (3) are displayed in Fourier series to
bring the mth line amplitude of the aperture field compo-
nents and the mth line amplitude of basis functions into
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relationship denoted by

3
Ez(m’h2)= Z bxéaz,s(m>h2)’

s=1

(4)

The coefficients a, and b, involved in (3) and (4) are the
first true constants of the waveguide problem.

By using an inner product consistent with the Parseval
theorem, the Galerkin’s procedure is directly applied to the
matrix form (2) in the Fourier domain. A set of R+ §
homogeneous and linear equations, for which the R+ S
unknowns are precisely the constants a, and b,, is ob-
tained. ‘

Nontrivial solutions of this set of equations occur for
zero values of its matrix determinant. The real roots (i.e.,
B?>0) determine the propagating eigenmodes, whereas
the imaginary roots (i.e., 8%<0) determine evanescent
ones.

For any given root 8, the associated mth line amplitudes
of the aperture field components are expressed in terms of
the R+ S coefficients @, and b, involved in (4). By a
substitution process of E (m,hk,) and E,(m,h,) in
boundary conditions, the coefficients A(m) through H(m)
are determined, as well as the mth line amplitude of the
axial field components. The summation of Fourier series
gives finally the axial field components of eigenmodes
anywhere in the waveguide cross section.

Eigenmode normalization is not a necessary task as far
as the waveguide treatment is concerned. However, this
operation can be found relevant in the further discontinu-
ity problem. So, applying again the Parseval’s theorem, the
orthogonality of eigenmades in lossless waveguides can be
expressed directly in the spectral domain as

B & rthy+hygp o= -
—2_ Zofv; B[Ex,p(m,y)H;:P/(m,y)
m= 1~ N 8
_Ey,p(m’y)Hx’l:p'(m,Y)]dy=S|—B§—|P8pp, (5)

where 8, represents the Kroneker delta and the coefficient
s can take the values +1 or —1 depending on the propa-
gating or evanescent nature of the eigenmode labelled p.
Line amplitudes of transverse field components involved in
(5) are derived from longitudinal components given by (1).
The eigenmode normalization is carried out if the R+ §
unknowns a, and b, in (3) and (4) associated with a given
root B are reevaluated to ensure a power flow value P
equal to 1 W in (5). '
III. MODAL ANALYSIS OF SINGLE- AND
MULTIPLE-STEP
SLOT WIDTH DISCONTINUITIES

The problem to be treated is how an incident accessible
power entering each side of the junction is apportioned
between the various scattered eigenmodes. The solution lies
in the derivation of the generalized scattering matrix { S} of
the junction.
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(b)

Fig. 2. (a) A single-step slot width junction between two unilateral

finlines. (b) Model for modal analysis.

A single slot width discontinuity as that shown in Fig.
2(a) can be modeled by a junction between two cylindrical
closed waveguides as shown in Fig. 2(b). We have to notice
that the conducting fins in Fig. 2(a) have negligible thick-
ness. They have been drawn so for a better comprehension
of the model of Fig. 2(b).

The transverse electric and magnetic field to the left of
the junction plane z=0 (waveguide I side) can be ex-
pressed as

=3

M~

Ei= Y (4,+B)) -
p=1

— P —

Ai= % (43 B, r ©
p=1

In a similar manner, to the right of the junction plane
z = 0, the expansion of the transverse electric and magnetic
fields is written as

Q
Ef=Y (4¥+BP)el,
g=1
—> Q —
HPE= Y (BE-AY)RY,. (7)

g=1

The above expansions involve normalized transverse
electric and magnetic fields &% ,, AL ; (resp.: €M, Al )
associated with the eigenmode p (resp.: g) of the wave-
guide I (resp.: II). Eigenmodes p and ¢ are forward
traveling waves in the two waveguides I and II, while the

modal amplitudes A4, B, (resp. A, B)') are referred to

incident and reflected waves in the waveguide I (resp. II) at
the junction plane.

If Sy <S8y (this is the case outlined in Fig. 2), the
boundary conditions at the junction plane z=0 can be
expressed as

E} = Ef (82)
Hi=Hy' (8b)
on the aperture surface S, and as
E¥=0 (8c)
HE+ JIA#=0 (84)

on the transverse conducting wall S.

The junction surfaces S, and S, are related to wave-
guide cross sections S} and S;; by S, =S; and S, + S =
St .

The surface current J; on the conducting wall S, is
labeled with a subscript I to indicate a relationship with
waveguide 1.

The next step is to transform pairs of boundary func-
tional equations (8a) and (8b) into an equivalent set of
linear equations involving the 2( P + Q) modal amplitudes
A, B}, A], and B.' to be determined.

There is a unique procedure to derive such an equivalent
linear set of 2(P + Q) equations that is closely related to
the basic assumption S; < Sp. This point has never been
clarified enough in the literature, especially according to
the uniqueness of the solution; therefore, it is summarized
briefly in Appendix III.

Thus, the generalized scattering matrix of the simple
discontinuity can be constructed from this system of
equivalent linear equations which can be written in a
matrix form as

"[PY[ 4]+ [B']) = [LI([4™]+[B™])

[K]([4"]-[B']) = [N)([B"]-[4"]) (9

with
A7 | B} |
45 B,
A= | [B1=|"
=1 | BB
_Aﬁ, Bl
—A{I‘ -B%ﬂ
AY BI
[AH] = :n [BH] = :n (10)
4, B,
1 I
| 4o | | Bo |




HELARD ef al.: FINLINE DISCONTINUITIES

where
[P] matrix PXQ; P, , =/S AhH* uds
1
. . B,
[L] diagonal matrix QX Q; L, = Sqm
q
. . B,
[K] diagonal matrix P X P; K, ,= Spl_.B—|
[ N] matrix O X P; N =f e ARD - 5dS.
S;

(11)
From (9), the generalized scattering matrix can be written
in the form

[B]=1[S]-[4] (12)
where
| [B1] | [47]
[B]“[[BH] L4]= [A“]]' 1)

The generalized scattering matrix of the junction assem-
bles two reflection blocks denoted [S;;] and [S,,] and two
transmission blocks denoted [S,,] and [S,,] arranged as

[S11)s,<sy

[s1s<s=[ [S“]S“S“]. (14)
P [S21]Sl<Su

[S2]s,<sq
Each block has a size (P + Q)X(P + Q) and can be
determined separately from matrices [P],[L], [K], and [ N]
after extensive algebraic manipulation of (9). Results are
listed below:

[Suls,<sp= ((K]+[N]-[L]7"71P])
([K1-[N1-[L] 7 P])
2([K1+[N)-[L]717[P]) - [N]
2([L]+T[P]-[K]7*[N]) 7 [P]
—([L]+[P) (K1 [N])
([L1-TP)-[K]7V[N]). (15)

The above [S] matrix is labeled with subscripts S} < Sy,
to recall that it is addressed only to the case S; < Sy. As
mentioned in Appendix III, the [ S] matrix addressed to the
alternative case Sy; < Sj is derived in a quite different way.
However, the results can be related to the previously
studied case: Sy < Sy This relation can be written as

[SIZ]SI<SH=
[Szlls,<sn=

[Szz]s,<sﬂ

[S22]S1<SH [SZI]S1<SH

(16)

S]s >Sp =
[$1s [Suls,es,

[ S 12] S1< Sy
1V. COMBINATION OF THE SPECTRAL-DOMAIN
APPROACH AND THE MODAL ANALYSIS

The spectral-domain approach evaluates both the phase
constants and the associated line amplitudes of eigenmode
field components.
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TABLE I
Basis FUNCTIONS AND ASSOCIATED LINE AMPLITUDES OF THE
APERTURE FIELD CORRESPONDING TO ODD MODES

{

{

1

|

b xfaw/2

b 2 «

4! £(x)= £(m) =~ s1n 1‘.
H 2
1

5
o x>z ¢

!

: -—_zl—n- BEIR 74

§

Lo=(2x/W) W W

E (x,D : : £(x)= §( ) Fla) = :.. 3 (:"‘_)

I I

: { 0 i lxl>w/2

1 ! cos(2rx/¥) Il

I ) - il=lew/2

i PRI - a ¥

I PR [ o) Flor +-Zfreesh

a W
0 shal>ur2 RO Y

2 12
22/, (1. -/ %y x| e/

i
£(x) - fa) = - — J, —29
aB 2

0 i lxl>w/2)

£.(x,D)

sia(6mx/W)
P i |xlew/2] % Jvw a¥
[ |.=(2x/W) @) = - — [’o"" bl
a s J (o) Lo
W/2 o w/z )
' e x 0 s x|>w/2] - Jp2m T)]
1

As a result of the eigenmode normalization, the calcula-
tion of elements L,, and K,, of matrices [L] and [K] is
reduced to the determination of the propagating or
evanescent nature of eigenmodes labeled p and g in wave-
guides I and II, respectively.

The computation of elements P, , and N, , of matrices
[P] and [Q] can be quickly accomphshed as it is done
directly in the spectral domain. For example, the P, .
coefficient can be expressed from (11) as

—B Z j-h2+h3

L(m, )BT (m, y)

—el (m, )Y (m, )| @v. (17)

V. COMPUTED RESULTS

A. Unilateral Finline Analysis

The sets of basis functions selected to describe the
aperture field are represented in Table I. As shown in [11],
the dominant mode can be described precisely by means of
a single E _(x, D) basis function: the unit rectarigular pulse
denoted f,(x) in Table I. However, to describe both the
dominant and the higher order modes, the aperture field
expanded with the basis functions denoted f1(x), f,(x),
f3(x), and f,(x) in Table I appears as a more judicious
choice. Checks of this aperture field have been made in two
limit cases for the unilateral finline: the standard rectangu-
lar waveguide (e,—1; W/B-—1) and the rectangular
waveguide loaded symmetrically by. a dielectric slab
(W/B —1). They allowed conclusions to be made about
the completeness of at least the first six eigenmodes.
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5 th mode

4 th mode

18l

Phase Constant (rad /m ) ——m

Dispersion characteristics of eigenmodes in a unilateral finline in

the Ku-band (¢, =2.22, h, = 0.254 mm).
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Fig. 4. E, field component of the fundamental eigenmode for the

shown finline.

Dispersion characteristics of the first six eigenmodes in a
unilateral finline in the Ka-band are plotted in Fig. 3 for
two values of the slot width. They show that the frequency
band for single-mode operation in.a unilateral finline is
quite identical to those of the standard WR28 rectangular
waveguide. Another check of the aperture field is to com-
pute the eigenmode distribution to be sure of the boundary
conditions as shown in Fig. 4 for the E, component of the
fundamental mode as a function of y at x = 0.8 mm.

B.  Scattering Parameters of Single-Step Slot Discontinuity
in a Unilateral Finline

The most critical factor in the modal analysis is the
convergence of reflection and transmission coefficients as a
function of the number of modes taken into consideration
when writing the boundary condition equations (8) at the
junction plane. A relative convergence towaids wrong val-
ues may be obtained if the number of modes is not
sufficiently high.

Convergence tests on the moduli and the phases of
reflection and transmission coefficients are performed
making use of the description possibilities that are offered
by the spectral-domain approach for the finline. The re-

0.220 -

0225}~

0230

{ F=35GHz
@
o
02351
o
w
o WR 28
0240 ~
! 12
1
0245}~ 3556
Duroid
? I S WU N Y I S O N S B
1 2 3 4 5 6 7 8 9 t0 11 12 13
Generalized Matrix Dimensions {P + Q) —————@=
Fig. 5. Convergence test of the amplitude of the transmission coefficient

for a step slot width discontinuity between two unilateral finlines
(dimensions are in millimeters).

sults of these tests applied on an abrupt junction between
two finlines, as well as on an abrupt junction between a
finline and a rectangular waveguide, are respectively given
in Figs. 5 and 6. Here, the total number of modes did not
exceed 14. The highest level of the curves drawn in Figs. 5
and 6 is supposed to be the real convergence level. Fig. 7
shows the computed scattering parameters of a unilateral
finline discontinuity as a function of frequency compared
with these computed by Schmidt [8] using the mode-match-
ing procedure and with these computed by Sorrentino and
Itoh [8] using the transverse resonance technique. Our
results are in excellent agreement with Schmidt’s results
and in good agreement with Sorrentino’s.
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Fig. 6. Convergence test of the amplitude of the transmission coefficient for an abrupt junction between an empty rectangular
waveguide and a unilateral finline (dimensions are in millimeters).

N
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L [sn‘
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= € =222
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[Su]
0 ] L l 5
26 30 Frequency (GHz) 35 40

Fig. 7. Scattering parameters of a unilateral finline step discontinuity.
—— Our theory, ----- Sorrentino’s [8] results, and o Schmidt’s results.

C. Comparison Between Theory and Experiments

In order to evaluate objectively the effectiveness of the
direct modal analysis for computer-aided design of finline
circuits containing different discontinuities, the following
three circuits have been fabricated, their scattering parame-
ters have been calculated, and finally measured. The calcu-
lation of each circuit includes the effect of the discontinu-
ity created by the narrow face of the substrate. The first
circuit is that of two simple rectangular waveguide-uni-
lateral finline junctions as shown in Fig. 8. The agreement
can be judged satisfactory for the module of the transmis-
sion coefficient. The frequency shift of about 500 MHz can

€r=96
498 WR 62
790 ’Sr1 \\\\\\\\\\ ""1'% % ————— Theory
. L W ‘2 r=1 Experiment
UL O T LT

{dB)

o
w
24 i i i i i |
13 14 15 16 17 18
Frequency { GHz ) —— g
Fig. 8. Back-to-back arrangement of two abrupt junctions between an

empty rectangular waveguide and a unilateral finline (dimensions are in
millimeters.

be explained by the mechanical constraints in-the fabrica-
tion process (e.g., positioning grooves). The second circuit
represents a pair of complex transitions each composed of
three single simple transitions as shown in Fig. 9. The
agreement between theory and experiment is still good in
spite of the systematic frequency shift like that observed in
the results of the first circuit. The third circuit is that given
in Fig. 10, which represents a gradual transition operating
in the Ku-band. The calculations are performed after divid-
ing the transition into nine single simple discontinuities
(Fig. 11). The agreement between theory and experiment is
considered definitively satisfactory.
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40 |-
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Fig. 9. Measurements and simulation results of a waveguide to finline
complex transition in the Ka-band (dimensions are in millimeters).

0

|511| (dB) ———

experience

————— theory

40

Frequency { GHz )} =g

Fig. 10. Comparison between theory and experiment for the shown
tapered transition (dimensions are in millimeters).

VI. EQUIVALENT-CIRCUIT PARAMETERS OF SIMPLE
FINLINE DISCONTINUITIES

The knowledge of both the reflection coefficient S;; and
the transmission coefficient S,; in a given frequency band
allows one to construct the equivalent circuit of the junc-
tion.

Each line having an access to the junction is considered
as a lossless transmission line for which the effective dielec-
tric constant and the characteristic impedance are those
corresponding to the fundamental mode. The spectral-
domain approach of a finline allows one to calculate these
parameters directly in the spectral domain with excellent
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" 635

79 o —

L 9s \

l—ei—2 4

Fig. 11. Theoretical cutting used in the simulation of the transition

reported in Fig. 10 (dimensions are in millimeters).

Fig. 12. Equivalent-circuit parameters of an elementary discontinuity.

accuracy. It is worth mentioning that the characteristic
impedance is calculated according to a definition that
relates the power flow of the fundamental mode and the
potential that is induced between the slot edges.

As far as the single-step slot discontinuity is concerned,
an equivalent circuit like that shown in Fig. 12 can be
selected. The parameters C, [ L and 1Y of this equivalent
circuit can be calculated by comparison of its scattering
matrix to that of the single simple discontinuity restricted
to four coefficients which represent the reflection and the
transmission on only the fundamental eigenmodes of the
two finlines having an access on the junction.

Examples of the results are reported in Figs. 13 and 14.

VIIL

The spectral-domain approach combined with the direct |
modal analysis appears as a very promising technique for
calculation of scattering matrix elements of finline discon-
tinuities.

CONCLUSION
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WR 28
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Capacity { pF ) ———

f

W1=1883mm W2=355mm
-------- W1=1244mm W2=1883mm
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Fig. 13. Values of the lumped capacitance of the equivalent circuit of an
elementary discontinuity as a function of frequency (e, =2.22, h, =
0.254 mm).

W1=1883mm W2=355mm
WT=1244mm W2=1883mm
W2=1244 mm

- -— Wil=1mm

I (mm) ————-

| I

03 L | ) | I L | ' 1 ) |

Frequency {GHz) —————wm

Fig. 14. Reference plane localization as a function of the frequency for
the given elementary discontinuity (¢, = 2.22, b, = 0.254 mm).

Convergence is indeed necessary both in the waveguide
eigenmode evaluation and in the waveguide discontinuity
problem. In the case of a unilateral configuration, results
show that a relatively simple aperture field allowed an
unambiguous identification of six eigenmodes. Moreover,
they show that, within such an identification, a satisfactory
convergence on scattering parameters of a step slot width
discontinuity can be achieved.
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The agreement between theory and measurements per-
formed on three different complex finline discontinuities is
quite satisfactory.

APPENDIX I

The mth line amplitudes E, ,(m, y) and H, ,(m, y) can
be written in the case of unilateral finline in the following
form:

E, (m,y)=A(m)sinhy,(y + h,)
H, (m, y)=B(m)coshy,(y + k) (Ala)
in region (2)
- E, ,(m,y)=C(m)sinhy,y + D(m)coshy,y
H, ,(m, y)=E(m)sinhy,y + F(m)coshy,y
(Alb)
and in region (3)
Ez,3(m’ y)=G(m)sinhvy;(hy+h;— y)
A, 3(m, y)=H(m)coshy,(h,+h;—y) (Alc)
where coefficients y, (i =1, 2, and 3) are defined as

2_ 2 2 2
Yi=Y =, ki

vi=a,— k3 (A2a)
with

ki =w’noeq— B2

k3= wpoece, ~ B (A2b)

represent the transverse wavenumbers of the mth line
amplitude of the guided wave inside each region.

In (A2b), B denotes the phase constant of the guided
wave to be determined at any given angular frequency w.

APPENDIX 11

The elements of the admittance matrix representation
[G] given in (2) can be written as

tanh (y,4,) %
G.. = — il g2 tanh(vohs) F(kZ______i__
" J[ > HowYs €0 ztanh(YIhl)
€Y, coth(y;%;)
+k2———5————-) 20NB) | (A3
ltanh(Yzhz) bopewr ( )
., tanh (v, /,) ( Y1
Gu_Gn_ﬁjaB[ BowY o tanh (v, 4, )
" €2 ) coth(y:/5) (A4)
tanh(Yzhz)‘ P oYy

j[B (tanh(Yzhz) _

€071
PowYr tanh (v, h,)

€ofr Y2

Ftanh(yzhz) )} (A5)

th{y,h
+B, coth(yh3) _
FowYy
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where
k3= wpoeoc, — B2
ki = "-’2.“»0‘0",32
Bz=“2_M0€0€r"~’2
Bl=“2_!‘0‘o‘*’2
_ KK e
cosh? (v,h,) 8

. 2
6= (0‘:3)2(1(12 - k%) - 501"«0“’2 [klerz + szl

tanh (v, 4;) )]
o tanh(v,h,) | |

tanh (y,4,)
tanh (v, /,)

+ (klkz)zYﬂ’z (

APPENDIX III
Equauons (8a) and (8¢) are scalarly multiplied by hH* At
and e “rAdi, respectively, and then integrated over Sy
Since SI < Sy, S4=;, thus the orthogonality properties
of eigenmodes in waveguide I can be used to obtain the
following set of P + Q linear equations:

P
Y. (4L +BY) [ & AR dds =
r=1 51

Q
¥ (A;I+B;I)fs*“ FARYGdS,  ¢'=1,--,0 (AS)

1 (Bl - 41) fs IE;T,TAZ;{TMS,

I
T[\’]to

p’'=1,---,P (A7)

which are found quite equivalent to boundary functional
equations (8). ’

Similarly, the scalar multiplication of (8b) by hn* Au
and (8d) by eP *+Adi and the surface integration over Se
provides the set of P + Q equations

o
z

(AT + BI) [ & AR, idS =0,
q S

1 c

p'=1,---,P. (A9)

During derivation, use has been made of the following
equation:

fS (2, ;AG)-(JEAi) dS = jSCJ_}-e;deS= 0

C
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due to the above-mentioned connection of the surface
current J} with waveguide L.

Clearly, the set (A8) can be imbedded in set (A6) after
enlarging the surface integration at its right-hand side from
S; to Sy=S,+Sc Such a widening is done without
altering the left-hand side of set (A6), and, moreover, use
can then be made of the orthogonality in waveguide II.

Now, as far as the set (A7) is concerned, another look at
the set (A9) shows that its right-hand side already includes
it.

Considering now the case S!>SY the functional
boundary conditions of (8) still hold except those over S,
((8c) and (8d)), which must be replaced by

EL=0 (A10)

= JPA# (A11)

where the superscript II of the surface current notation J:;IsI
indicates now a relationship with the waveguide II. There,
another unique procedure must be employed to derive the
linear set of P + O equations equivalent to the boundary
functional equations (8), (A9), and (A10).

This alternative procedure starts from the scalar multi-
plication of (8a) and (A6) by h); A and of (8b) and
(A7) by e 1" Aii, followed by surface integration where use
must be made of the basic assumptions S,= Sy and
Sy +S8S-=8;.
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